首页> 外文OA文献 >Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data
【2h】

Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data

机译:基于迭代双簇的最小二乘最小框架估计微阵列基因表达数据中的缺失值

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

DNA microarray experiment inevitably generates gene expression data with missing values. An important and necessary pre-processing step is thus to impute these missing values. Existing imputation methods exploit gene correlation among all experimental conditions for estimating the missing values. However, related genes coexpress in subsets of experimental conditions only. In this paper, we propose to use biclusters, which contain similar genes under subset of conditions for characterizing the gene similarity and then estimating the missing values. To further improve the accuracy in missing value estimation, an iterative framework is developed with a stopping criterion on minimizing uncertainty. Extensive experiments have been conducted on artificial datasets, real microarray datasets as well as one non-microarray dataset. Our proposed biclusters-based approach is able to reduce errors in missing value estimation.
机译:DNA微阵列实验不可避免地会产生缺失值的基因表达数据。因此,重要且必要的预处理步骤是估算这些缺失值。现有的估算方法利用所有实验条件之间的基因相关性来估计缺失值。但是,相关基因仅在实验条件的子集中共表达。在本文中,我们建议使用双聚类,其在条件子集下包含相似的基因,以表征基因相似性,然后估计缺失值。为了进一步提高缺失值估计的准确性,开发了一种迭代框架,该框架具有将不确定性最小化的停止准则。已对人工数据集,实际微阵列数据集以及一个非微阵列数据集进行了广泛的实验。我们提出的基于双聚类的方法能够减少缺失值估计中的误差。

著录项

  • 作者

    Cheng, KO; Law, NFB; Siu, WC;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号